Posts Tagged ‘West Virginia’

WVU Study of Rare Earth Elements Moves to Second Phase

Written by Andrew Stacy on . Posted in Media, News, Press Release

A picture of the WVU Rare Earth Element Project Team.

Members of the Rare Earth Recovery team with a sample of AMD based rare earth feedstocks, Wednesday, August 23, 2017.
Back Row (left to right): Chris Vass, REE extraction plant operator; Dr. Aaron Noble, associate professor, Department of Mining and Minerals Engineering, Virginia Tech; Dr. Xingbo Liu, professor of mechanical engineering, Statler College of Engineering and Mineral Resources, West Virginia University; John Adams, West Virginia University Energy Institute. Front Row: Jennifer Hause, project coordinator, West Virginia Water Research Institute at West Virginia University; Dr. Paul Ziemkiewicz, director, West Virginia Water Research Institute at West Virginia University.

The U.S. Department of Energy’s National Energy Technology Laboratory has selected West Virginia University to move forward with its program to extract valuable rare earth elements, vital to the technology industry, from coal mining by-products.

Phase two of the WVU project – which includes $3.38 million of federal and industry funding – will demonstrate the technical and economic feasibility of extracting rare earth elements from acid mine drainage, or AMD. The selection follows two earlier NETL awards to study AMD as a feedstock to bolster U.S. domestic supplies of rare earth elements.

Rare Earth Elements have significant value, being used in modern technologies such as cell phones, rechargeable batteries, DVDs, GPS equipment, medical equipment and various defense applications. Conventional rare earth recovery methods are difficult, expensive and generate large volumes of contaminated waste. Because of this, the U.S. imports nearly all of its rare earth needs from China.

WVU’s project, “Recovery of Rare Earth Elements from Coal Mine Drainage,” will develop a new, domestic source of rare earth elements that will be easily extracted, operate on already permitted sites and produce negligible, new waste materials. In fact, the process may emerge as a way for land owners to generate income from formerly mined properties.

“Mine drainage from abandoned mines is the biggest industrial pollution source in Appalachian streams,” said Dr. Paul Ziemkiewicz, director of West Virginia Water Research Institute and principal investigator on the project.

“As a result, lots of streams that were once ecologically dead, such as the Monongahela and Cheat Rivers, are now valuable recreational fisheries.

“When NETL announced its interest in rare earth recovery it became clear that the mine drainage could be an attractive feedstock for rare earth production. Our research has since focused on finding ways to capture this rare earth resource while incentivizing mine drainage treatment. This project will be a perfect fit to WVU’s mission to create economic opportunity for West Virginians.”

Ziemkiewicz, along with co-investigators Dr. Xingbo Liu, professor of mechanical engineering from the Statler College of Engineering and Mineral Resources at WVU and Dr. Aaron Noble, associate professor at Virginia Tech’s Department of Mining and Minerals Engineering will install a small-scale, continuous extraction facility on the WVU campus.

“The economics of recovering rare earth elements from coal mine drainage appear favorable, and this project will give us the opportunity to develop and optimize the critical separation technologies that will enable commercial-scale production,” said Noble.

The research team will partner with Rockwell Automation to adapt their sensor and control technology and facilitate market readiness. Paul McRoberts and Pete Morell will represent Rockwell Automation on the project team. A global supplier of controls, the company will ensure the success of the project by providing solutions and support services to manage the complex components that will comprise the rare earth extraction process.

John Adams from the WVU Energy Institute will then develop a commercialization plan to move the technology into the marketplace.

-WVU-

ahs/08/24/2017

CONTACT: Paul Ziemkiewicz, West Virginia Water Research Institute
304.293.6958, paul.ziemkiewicz@mail.wvu.edu

Related Press Releases:

    – Appalachian Coal Mine Waste Could Provide Key Ingredients for Clean Energy
    – WVU Study Will Determine Amount of Rare Earth Elements in Region’s Coal Mining Waste
    – WVU Leads Efforts to Study Recovery of Rare Earth Elements from Coal Mining Waste

Ziemkiewicz analyzes data from untreated mine water used as a drinking source for Inside Appalachia

Written by Tracy Novak, NRCCE Communications on . Posted in Media, News

Morgantown, W.Va. – As mining companies close and leave Appalachia, water systems in these company towns are often abandoned. Eight water systems in southern West Virginia are “intractable,” meaning the systems are no longer maintained and the water is no longer treated, leaving residents vulnerable. In Garwood (Wyoming County), water comes from an abandoned coal mine.

Inside Appalachia, a program on West Virginia Public Broadcasting, examined the question, “Is water from an abandoned coal mine fit to drink?” Reporter Anne Li asked Paul Ziemkiewicz, director of the West Virginia Water Research Institute, to comment on water testing results from coal mine water that feeds into Garwood’s derelict water system.

With the limited data provided, according to Ziemkiewicz, the worst containment in the water from 2000 to 2008 was coliform. This bacteria can be a sign of sewage contaminating the water supply. Data from 2008 to 2014 showed no signs of coliform, but because the water is still untreated, Garwood has been on a boil water advisory since 2015.

Hear more details on Inside Appalachia’s: “Coal’s Legacy in Appalachia: As Mining Companies Close, Water Systems Fail.” “Mine water as a drinking source” segment starts at 36.05. Ziemkiewicz’s comments at 37:01.

-NRCCE-

tn/2/20/17

An icon that notifies readers of a West Virginia Water Research Institute Event.

WVWRI to co-host regional water conference; announces Call for Abstracts

Written by Andrew Stacy on . Posted in Blog, Events, News

The West Virginia Water Research Institute at West Virginia University is accepting abstracts through March 27 for the 2017 Mid-Atlantic Water Resources Conference.

The event will be held October 12-13, 2017 at the National Conservation Training Center in Shepherdstown, W.Va. “Water Research: Building Knowledge and Innovative Solutions” is the theme for this regional conference.

Researchers from colleges and universities, state and federal agencies, private organizations, consulting firms, industry and students are invited to submit abstracts for consideration for oral and poster presentations.

Abstracts for basic and applied research papers are being solicited in all areas related to water resources including infrastructure, energy, monitoring, policy, supply, technology, water quality and others.

The conference combines exceptional educational programs with opportunities for researchers, policy makers, state and federal agencies, environmental consultants, private organizations and the public to share in the latest information, technologies and research relating to water resources in the Mid-Atlantic.

“Water science, unlike many fields, involves a wide range of disciplines including law, engineering, social sciences, policy, economics, chemistry and biology,” said Paul Ziemkiewicz, director of the West Virginia Water Research Institute.

“This conference is a great opportunity to bring practitioners together to build the knowledge base needed to effectively manage our most precious resource.”

The event is being hosted by the West Virginia Water Research Institute, University of Delaware Water Resources Center, Pennsylvania Center for Water Resources Research at Pennsylvania State University, and the Virginia Water Resources Research Center at Virginia Tech.

For more information about the 2017 Mid-Atlantic Water Resources Conference, including abstract submission details, please visit www.midatlanticwrc.org.

Researchers at KU, WVU to strengthen water-stewardship practices for U.S. energy production

Written by Tracy Novak, National Research Center for Coal and Energy on . Posted in News, Press Release

Every year in the U.S., a whopping 20 billion barrels of water are generated as a byproduct of domestic oil and gas recovery, according to the U.S. Department of Energy.

Safe and environmentally responsible management of this “produced water” is important to energy companies, farmers, ecosystems and everyday people whose drinking water comes from associated aquifers.

Now, a joint research effort founded by the University of Kansas and West Virginia University — funded by a new $4 million grant from the National Science Foundation — aims to develop cutting-edge strategies for better management, treatment, protection and recovery of produced water. The scientists behind the work hope to establish a permanent center focused on research-proven best practices for handling produced water nationwide.

“Obviously, we need energy,” said Edward Peltier, KU associate professor of civil, environmental and architectural engineering, who is the primary investigator of the new project. “We use energy resources every day, and we’ll continue to use them. That means the better job we do producing energy in an efficient, clean manner — and not affecting other resources like water quality — the better off we are.”

Paul Ziemkiewicz, co-PI of the new grant and director of the West Virginia Water Research Institute at WVU, pointed out that until now there has been no nationally coordinated research effort to address issues tied to produced water.

“NSF’s support will create a national center for technology development as well as training and outreach to recruit a new generation of specialists to address this challenge,” he said.

All oil and gas production, whether by conventional or hydraulic fracturing methods, generates produced water. Its characteristics vary among the nation’s petroleum basins.

“It’s a combination of returned water injected into the ground as part of oil and gas recovery, as well as formation water, trapped inside the rock along with the petroleum — how much water comes out depends on the local geology. Kansas wells produce more water than oil,” Peltier said.

Ziemkiewicz added that Appalachian shale gas wells are net water consumers.

“So far, new well completions have absorbed most of our produced water, but as new completions decline, we need to find new ways to manage this water,” he said.

Across the country, this water has high salt content and other contaminants.

As a result, the researchers said there are issues with reusing water directly or discharging it on the surface. Currently, the leading form of disposal of produced water is reinjection into the subsurface. The practice has gained notoriety in some regions because of its association with earthquakes. Indeed, Kansas now puts regulatory curbs on deep-well re-injection of produced water.

The research under the new NSF grant will develop practices to improve the safety of deep-well injection and develop economical methods for treating produced water so that it can be reused.

“We want to come up with management and treatment techniques so we can reuse this water,” Peltier said. “It needs to be treated before it can be reused. This project is focused on ways to treat the water, to manage the production process so we have less wastewater to deal with and looking at the impact of water in ecosystems when it’s released. How much do we treat it so it doesn’t have harmful effects?”

Differences in the geology of plains Kansas and mountainous West Virginia mean the joint investigation into produced water at KU and WVU will have national application.

“We’ll initially focus on the central plains and Appalachian basins,” Peltier said. “We think there will broader applicability to the work we do that will apply to other petroleum basins.”

Moreover, the research assets of the partner institutions will complement each other. For instance, WVU operates the Marcellus Shale Energy and Environment Laboratory, a long-term field site supported by the DOE National Energy Technology Laboratory. WVU researchers led by Ziemkiewicz are studying water used in hydraulic fracturing through the late stages of the produced water cycle.

Similarly, KU has field resources already established that will sustain the partnership.

“KU has the Tertiary Oil Recovery Program that has worked with oil producers in Kansas developing various recovery strategies and large-scale field tests,” Peltier said. “The goal here is both KU and WVU have overlap in energy and production and water treatment and protection. So we want to establish a long-term relationship, so even at end of this grant we’ll have additional cross-disciplinary and cross-university projects extending beyond the length of the grant.”

Students at both universities will benefit from new programs created by the grant, which the researchers said would help train a new generation of experts in sustainable oil and gas recovery practices.

“We’ll have undergraduate students cross-training each other’s universities and departments to strengthen research ties and match students with instructors at both schools, and we’ll have junior faculty going back and forth to establish partners they can work with in the lab, in the field and at the well in West Virginia,” said Peltier.

Programs involved in the new NSF grant include KU’s Department of Civil, Environmental and Architectural Engineering, Tertiary Oil Recovery Program and Department of Chemical & Petroleum Engineering. In addition to the Water Research Institute, the WVU team includes Lance Lin, civil and environmental engineering Harry Finklea, chemistry Joe Donovan, geology Todd Petty and Eric Merriam of wildlife and fisheries, and Shawn Grushecky of the Energy Land Management Program.

-WVU-

CONTACT: Tracy Novak, National Research Center for Coal and Energy
304.293.6928, Tracy.Novak@mail.wvu.edu