The State Journal Publishes Article Highlighting West Virginia At Shale Insight

Written by Sarah Stone on . Posted in Blog, Media, News, Press Release

Print Friendly, PDF & Email

The State Journal penned an article discussing West Virginia’s strong presence at Shale Insight. The article titled, “W.Va research and projects makes strong showing at Shale Insight” highlights research from WVU graduate students and members of WVU’s associated institutes. One of the aforementioned members, Paul Ziemkiewicz, director of West Virginia Water Research Institute, was featured prominently.

The State Journal wrote, “Paul Ziemkiewicz, director of the West Virginia Water Research Institute, began the day’s activities with a presentation on the work being conducted at WVU’s Marcellus Shale Energy and Environment Laboratory, much of which is done in conjunction with the National Energy Technology Laboratory and Northeast Energy, among others.

“We’re doing a lot of work on instrumenting these wells, and we hope this is useful to the industry in increasing efficiency and production and recovery rates,” he said.

Ziemkiewicz added that there are also environmental components to the work at Marcellus Shale Energy and Environment Laboratory, which is where his institution comes into play, studying the organic and inorganic chemicals associated with well operations and water quality.

“We’re finding the growth and drop-off rates of the different chemistries, and we’re finding that the produced waters have a great deal of salinity, levels off for a few years then starts dropping off fairly rapid in some of the six-year-old or seven-year-old wells,” he explained.

Ziemkiewicz also said that drill cuttings have caused controversy because some have claimed that they become radioactive. However, tests at the Marcellus Shale Energy and Environment Laboratory were conducted with green completion fluids (which reduce emissions) on 18 cutting samples in two wells.

“We found that they’re not radioactive and pass the TCLP (toxicity characteristic leaching procedure) test, so we’re not entirely sure why they keep having to go to a special landfill when they can be used beneficially for other uses that are not considered hazardous.”

To view the entire article, visit https://www.wvnews.com/statejournal/energy/w-va-research-and-projects-makes-strong-showing-at-shale/article_93f5197d-3d60-5e7c-9650-f1d96a0d024c.html

 

WRI Rare Earth Project in the News

Written by mkruger on . Posted in Media, News, Uncategorized

Print Friendly, PDF & Email

The Associated Press story about WVU’s new Rare Earth Extraction Facility was picked up by U.S. News & World Report, The Miami Dispatch, The Belleville News-Democrat, The Centre Daily Times, The Modesto Bee and The Clay Center Dispatch.

CONTACT: Paul Ziemkiewicz, West Virginia Water Research Institute
304.293.6958, paul.ziemkiewicz@mail.wvu.edu

WVU opens new research facility to extract valuable rare earths from acid mine drainiage

Written by mkruger on . Posted in Media, News, Press Release

Print Friendly, PDF & Email

Members of the WVU rare-earth research team from L to R: Paul Ziemkiewicz, director of the West Virginia Water Research Institute; Chris Vass, facility operator; and Xingbo Liu, professor and associate chair of research, Statler College of Engineering andMembers of the WVU rare-earth research team from L to R: Paul Ziemkiewicz, director of the West Virginia Water Research Institute; Chris Vass, facility operator; and Xingbo Liu, professor and associate chair of research, Statler College of Engineering and Mineral Resources, in the new Rare Earth Extraction Facility at the WVU Energy Institute/National Research Center for Coal and Energy. Photo by: M.G. Ellis

Story by Marissa Sura

MORGANTOWN, W.Va. — West Virginia University researchers are opening a new facility to capture valuable materials from a novel source – acid mine drainage from coal mining – turning the unwanted waste into critical components used in today’s technology-driven society.

Through a collaborative research and development program with the National Energy Technology Laboratory, part of the U.S. Department of Energy, WVU is opening the Rare Earth Extraction Facility to bolster domestic supplies of rare earths, reduce the environmental impact of coal-mining operations, reduce production costs and increase efficiency for processing market-ready rare earths.

Additionally, the technology could create jobs, helping to revive economies that have been historically dependent on the coal industry.

Demonstration of WVU's rare earth element extraction equipment at commissioning ceremony. Photo by: M.G. EllisDemonstration of WVU’s rare earth element extraction equipment at commissioning ceremony.  Photo by: M.G. Ellis

“Research on rare-earth extraction is one way that our University is fulfilling its most important mission—which is the land grant mission—to advance the prosperity of the people of this state,” President Gordon Gee said.

Representatives from WVU, NETL, DOE, representatives from West Virginia’s congressional delegation and others gathered today (July 18) in the High Bay Research Lab at the WVU Energy Institute’s National Research Center for Coal and Energy on campus to tour the new Rare Earth Extraction Facility and mark the start of this exciting new phase of research.

Brian Anderson, director of the WVU Energy Institute, hosted the event and conveyed statements of support from the members of the state’s congressional delegation, including Rep. David McKinley and Sens. Joe Manchin and Shelley Moore Capito.

In addition, WVU welcomed keynote speaker Steven Winberg, DOE assistant secretary for fossil energy.

“It’s a pleasure to be in West Virginia because West Virginians understand what it really means to have an ‘all-of-the-above’ energy strategy,” he said.

WVU is partnering with Rockwell Automation to facilitate market readiness through use of their sensor and control technologies in the new WVU facility.

Paul McRoberts, regional industry mining, metals and cement manager at Rockwell Automation, a 30-year veteran of the industry, said that this is one of the most exciting projects he has been a part of during his career and is excited to see the results of the new facility.

The facility is the researchers’ phase two project, worth $3.38 million, funded by NETL with substantial matching funding from WVU’s private sector partners. It follows on an earlier, phase one project, worth $937,000, to study acid mine drainage as feedstock for rare-earth extraction. The goal of the pilot facility is to test the technical and economic feasibility of scaling-up the technology to commercialize the separation and extraction process.

In addition, the team will be working to define a U.S.-based supply chain including the sludges created during acid mine drainage treatment and upstream to the acid-mine drainage source.

Neither rare nor earth

The name “rare earth elements” is a misnomer for important chemical elements that are actually neither rare nor earths.

A collection of 16 elements that hang off the bottom of the periodic table, they are moderately abundant but well dispersed in the Earth’s crust. They are identified as rare because it is unusual to find them in large concentrations.

The elements are all metals that carry very similar properties. In rare cases, they are found in deposits together. Unlike an element such as gold, natural rare earth deposits never occur as pure metals but are bonded in low-value minerals, making extraction challenging.

Conventional rare-earth recovery methods require an expensive, difficult and messy extraction process that generates large volumes of contaminated waste. China has been able to provide a low-cost supply of rare earths using these methods, and therefore, dominates the global market.

The conventional mining and extraction processes require mining ore from mineral deposits in rock, which is crushed into a powder, dissolved in powerful chemical solutions and filtered. The process is repeated multiple times to retrieve rare earth oxides. Additional processing and refining separate the oxides from their tight bonds and further groups them into light rare earths and heavy rare earths.

In usable form, these elements are necessary components of modern technologies. They are used in cellular phones, computers, televisions, magnets, batteries, catalytic converters, defense applications and many more segments of modern society.

Aaron Noble, associate professor of mining and minerals engineering at Virginia Tech, is a co-investigator on the project working with the WVU team.Aaron Noble, associate professor of mining and minerals engineering at Virginia Tech, is a co-investigator on the project working with the WVU team.

Paul Ziemkiewicz, director of the West Virginia Water Research Institute and principal investigator on the project, is an expert in acid mine drainage. He found that acid mine drainage, a byproduct of coal mining, “naturally” concentrates rare earths. Active coal mines, and in many cases state agencies, are required to treat the waste, which in turn, yields solids that are enriched in rare earth elements.

“Acid mine drainage from abandoned mines is the biggest industrial pollution source in Appalachian streams, and it turns out that these huge volumes of waste are essentially pre-processed and serve as good rare earth feedstock,” Ziemkiewicz said. “Coal contains all of the rare earth elements, but it has a substantial amount of the heavy rare earths that are particularly valuable.”

Studies show that the Appalachian basin could produce 800 tons of rare earth elements per year, approximately the amount the defense industry would need.

“Currently, acid-mine-drainage treatment is a liability, an environmental obligation,” Ziemkiewicz said. “But it could turn into a revenue stream, incentivizing treatment and creating economic opportunity for the region.”

Two-step process

Ziemkiewicz, Xingbo Liu, professor of mechanical engineering in the Statler College of Engineering and Mineral Resources, and Aaron Noble, associate professor of mining and minerals engineering at Virginia Tech, have designed the processing facility from the ground up using advanced separation technologies. Chris Vass, PE, is the operator of the new facility and a Summersville, West Virginia, native.

The researchers are using a two-step process to separate the rare earths from acid mine drainage: acid leaching and solvent extraction, which they call ALSX.

Researchers will dissolve the sludge in an acid. That solution will then be transferred to glass mixers and settlers that will make an emulsion that allows the oil phase and its extractant chemical to grab rare earths from the water, leaving the non-rare earth base metals like iron in the water

When that process is completed, the rare-earth-laden organic liquid enters another series of mixers and settlers that will strip the rare earths out as a concentrated solution and precipitate the rare earths as a solid, creating a concentrated rare earth oxide that can then be refined and further concentrated into pure rare earth metals to supply the metal refining industry.

The goal of the project is to produce three grams of rare earth concentrate per hour.

“For example, scandium, one of these rare earths, is worth about $4,500 per kilogram as an oxide, the form that it will leave this facility,” Anderson said. After refining, it would be worth $15,000 per kilogram.”

Unused materials will be returned to the acid mine drainage treatment plant’s disposal system, resulting in a negligible environmental footprint.

“This process uses an existing waste product that is abundant in our region,” Ziemkiewicz said. “It is also much easier to extract and requires much milder acids and has negligible waste materials when compared to conventional rare-earth recovery methods.”

A team, led by John Adams, assistant director of business operations at the WVU Energy Institute, is also defining the supply chain, moving upstream to the source and working with coal-industry partners. By producing a purified product at the mine, researchers could reduce transportation and waste handling costs.

“This could go a long way toward creating new economic opportunity for West Virginia and the region and make treating acid mine drainage a financial boon instead of a financial burden,” said Anderson.

 

 

CONTACT: Paul Ziemkiewicz, West Virginia Water Research Institute
304.293.6958, paul.ziemkiewicz@mail.wvu.edu

From Polluted to Playground: It’s Taken 25 Years to Clean up the Cheat River

Written by mkruger on . Posted in Media, News, Press Release

Print Friendly, PDF & Email

Story by Brittany Patterson, West Virginia Public Broadcasting

On a recent sunny Wednesday, Paul Ziemkiewicz, director of the West Virginia Water Research Institute at West Virginia University, was standing on a bridge looking out at Big Sandy Creek. It was a balmy afternoon, perfect for kayaking, and the creek running the Cheat River was clear. But 25 years ago, this water was a shocking orange color — from acid mine drainage.

Paul Ziemkiewicz. Photo by Brittany Patterson, West Virginia Public Broadcasting

“Look at this,” Ziemkiewicz said, gesturing to the raging water below. “This is a fishery now, but it was completely dead back then.”

This year the last heavily-polluted stretch of the watershed is set to be cleaned up.

“In my lifetime a river that was dead has now come back,” said Amanda Pitzer, executive director of Friends of the Cheat, a local conservation group that was formed by a motley crew of river guides and enthusiasts in 1994 to deal with acid mine pollution. The group also hosts the annual Cheat River Festival to celebrate the river and raise money to restore it.

Ziemkiewicz said originally in the Cheat River watershed — as is the case in many places dealing with AMD across Appalachia — regulators tried to address the problem by treating each individual mine contributing pollution to the river. But it’s not always effective.

“You can throw almost infinite amounts of money trying to treat point sources like that in a watershed like this that has both abandoned mines and also bond forfeiture sites and not make any impact at all on the quality of the stream because the abandoned mines dominate the whole picture,” he said.

A key piece to making this new approach work was some innovative thinking on the part of state regulators. The state DEP created an alternative clean water permit, which allowed the agency to address streamwide water quality, rather than treat individual pollution sources.

“The watershed scale strategy that DEP is using here actually restores the creek and for a lot less money,” Ziemkiewicz said.

Passive treatment system. Photo by Brittany Patterson, West Virginia Public Broadcasting

Standing in a grassy clearing overlooking this forested valley, it’s just possible to see the entry to a now-abandoned coal mine here in the headwaters of Sovern Run, a tributary of Big Sandy Creek, which runs into the Cheat.

Ziemkiewicz and his team built what’s called a “passive treatment” system. At Sovern site No. 62, AMD pollution flows through a series of limestone-lined ponds and channels. The alkaline limestone turns low pH, acid water coming out of the mine into much cleaner water through naturally-occurring chemical reactions. Passive systems don’t require power or the addition of chemicals and are often lower maintenance.

“We were able to knock off something like 80 percent of the acid load, most of the iron,” Ziemkiewicz said, of the passive treatment system. “The idea was to put a lot of these all over the watershed.”

To listen to or read the full story, go to the West Virginia Public Broadcasting website.