From Polluted to Playground: It’s Taken 25 Years to Clean up the Cheat River

Written by mkruger on . Posted in Media, News, Press Release

Print Friendly, PDF & Email

Story by Brittany Patterson, West Virginia Public Broadcasting

On a recent sunny Wednesday, Paul Ziemkiewicz, director of the West Virginia Water Research Institute at West Virginia University, was standing on a bridge looking out at Big Sandy Creek. It was a balmy afternoon, perfect for kayaking, and the creek running the Cheat River was clear. But 25 years ago, this water was a shocking orange color — from acid mine drainage.

Paul Ziemkiewicz. Photo by Brittany Patterson, West Virginia Public Broadcasting

“Look at this,” Ziemkiewicz said, gesturing to the raging water below. “This is a fishery now, but it was completely dead back then.”

This year the last heavily-polluted stretch of the watershed is set to be cleaned up.

“In my lifetime a river that was dead has now come back,” said Amanda Pitzer, executive director of Friends of the Cheat, a local conservation group that was formed by a motley crew of river guides and enthusiasts in 1994 to deal with acid mine pollution. The group also hosts the annual Cheat River Festival to celebrate the river and raise money to restore it.

Ziemkiewicz said originally in the Cheat River watershed — as is the case in many places dealing with AMD across Appalachia — regulators tried to address the problem by treating each individual mine contributing pollution to the river. But it’s not always effective.

“You can throw almost infinite amounts of money trying to treat point sources like that in a watershed like this that has both abandoned mines and also bond forfeiture sites and not make any impact at all on the quality of the stream because the abandoned mines dominate the whole picture,” he said.

A key piece to making this new approach work was some innovative thinking on the part of state regulators. The state DEP created an alternative clean water permit, which allowed the agency to address streamwide water quality, rather than treat individual pollution sources.

“The watershed scale strategy that DEP is using here actually restores the creek and for a lot less money,” Ziemkiewicz said.

Passive treatment system. Photo by Brittany Patterson, West Virginia Public Broadcasting

Standing in a grassy clearing overlooking this forested valley, it’s just possible to see the entry to a now-abandoned coal mine here in the headwaters of Sovern Run, a tributary of Big Sandy Creek, which runs into the Cheat.

Ziemkiewicz and his team built what’s called a “passive treatment” system. At Sovern site No. 62, AMD pollution flows through a series of limestone-lined ponds and channels. The alkaline limestone turns low pH, acid water coming out of the mine into much cleaner water through naturally-occurring chemical reactions. Passive systems don’t require power or the addition of chemicals and are often lower maintenance.

“We were able to knock off something like 80 percent of the acid load, most of the iron,” Ziemkiewicz said, of the passive treatment system. “The idea was to put a lot of these all over the watershed.”

To listen to or read the full story, go to the West Virginia Public Broadcasting website.

WVU Study of Rare Earth Elements Moves to Second Phase

Written by Andrew Stacy on . Posted in Media, News, Press Release

Print Friendly, PDF & Email
A picture of the WVU Rare Earth Element Project Team.

Members of the Rare Earth Recovery team with a sample of AMD based rare earth feedstocks, Wednesday, August 23, 2017.
Back Row (left to right): Chris Vass, REE extraction plant operator; Dr. Aaron Noble, associate professor, Department of Mining and Minerals Engineering, Virginia Tech; Dr. Xingbo Liu, professor of mechanical engineering, Statler College of Engineering and Mineral Resources, West Virginia University; John Adams, West Virginia University Energy Institute. Front Row: Jennifer Hause, project coordinator, West Virginia Water Research Institute at West Virginia University; Dr. Paul Ziemkiewicz, director, West Virginia Water Research Institute at West Virginia University.

The U.S. Department of Energy’s National Energy Technology Laboratory has selected West Virginia University to move forward with its program to extract valuable rare earth elements, vital to the technology industry, from coal mining by-products.

Phase two of the WVU project – which includes $3.38 million of federal and industry funding – will demonstrate the technical and economic feasibility of extracting rare earth elements from acid mine drainage, or AMD. The selection follows two earlier NETL awards to study AMD as a feedstock to bolster U.S. domestic supplies of rare earth elements.

Rare Earth Elements have significant value, being used in modern technologies such as cell phones, rechargeable batteries, DVDs, GPS equipment, medical equipment and various defense applications. Conventional rare earth recovery methods are difficult, expensive and generate large volumes of contaminated waste. Because of this, the U.S. imports nearly all of its rare earth needs from China.

WVU’s project, “Recovery of Rare Earth Elements from Coal Mine Drainage,” will develop a new, domestic source of rare earth elements that will be easily extracted, operate on already permitted sites and produce negligible, new waste materials. In fact, the process may emerge as a way for land owners to generate income from formerly mined properties.

“Mine drainage from abandoned mines is the biggest industrial pollution source in Appalachian streams,” said Dr. Paul Ziemkiewicz, director of West Virginia Water Research Institute and principal investigator on the project.

“As a result, lots of streams that were once ecologically dead, such as the Monongahela and Cheat Rivers, are now valuable recreational fisheries.

“When NETL announced its interest in rare earth recovery it became clear that the mine drainage could be an attractive feedstock for rare earth production. Our research has since focused on finding ways to capture this rare earth resource while incentivizing mine drainage treatment. This project will be a perfect fit to WVU’s mission to create economic opportunity for West Virginians.”

Ziemkiewicz, along with co-investigators Dr. Xingbo Liu, professor of mechanical engineering from the Statler College of Engineering and Mineral Resources at WVU and Dr. Aaron Noble, associate professor at Virginia Tech’s Department of Mining and Minerals Engineering will install a small-scale, continuous extraction facility on the WVU campus.

“The economics of recovering rare earth elements from coal mine drainage appear favorable, and this project will give us the opportunity to develop and optimize the critical separation technologies that will enable commercial-scale production,” said Noble.

The research team will partner with Rockwell Automation to adapt their sensor and control technology and facilitate market readiness. Paul McRoberts and Pete Morell will represent Rockwell Automation on the project team. A global supplier of controls, the company will ensure the success of the project by providing solutions and support services to manage the complex components that will comprise the rare earth extraction process.

John Adams from the WVU Energy Institute will then develop a commercialization plan to move the technology into the marketplace.

-WVU-

ahs/08/24/2017

CONTACT: Paul Ziemkiewicz, West Virginia Water Research Institute
304.293.6958, paul.ziemkiewicz@mail.wvu.edu

Related Press Releases:

    – Appalachian Coal Mine Waste Could Provide Key Ingredients for Clean Energy
    – WVU Study Will Determine Amount of Rare Earth Elements in Region’s Coal Mining Waste
    – WVU Leads Efforts to Study Recovery of Rare Earth Elements from Coal Mining Waste

Coal Industry Could be in store for a ‘rare earth’ reboot

Written by John Siciliano, Energy and Environment Reporter, Washington Examiner on . Posted in Media, News

Print Friendly, PDF & Email

The coal industry’s future may have much more to do with building smartphones, wind turbines and missile defense radar than billowing smoke stacks and environmental finger pointing, say federal coal advisers and experts.

The direction of the industry is aimed at harvesting what are known as “rare earth elements,” for which the U.S. industry depends on China.

The 19 elements are key ingredients in building complex electronics used in smartphones, jets, defense applications, advanced wind turbines and renewable energy, not to mention light-emitting diodes, or LEDs.

The bottom line is that the U.S. needs to diversify its supply of the minerals, and the coal industry is the nation’s best ticket to do that.

“To the extent that the administration is interested in and regards national defense as a strong national priority, I would think that they are very interested in securing a secure supply of rare earth elements that don’t rely on China,” said Paul Ziemkiewicz, West Virginia University’s water research director, who is at the forefront of transitioning the coal industry into a source of raw materials and mineral security.

The U.S. uses about 15,000 tons of rare earth elements every year, with about 800 tons of that going to the defense industry, he said. “And that’s for high-performance radars, sensors, magnets, some very specialized applications that [should] rely on a strategic reserve in this country.”

In 2016 alone, the U.S. imported more than one-half of its supply of 50 types of minerals, eight of which are identified as rare earth elements critical to the economy, according to the U.S. Geological Survey. Of those 50 minerals, the U.S. was 100 percent dependent on imports for 20 of them, including all eight critical and rare earth minerals. New data released this year showed that rare earth mining was nonexistent in the U.S. in 2016, while China continued to expand its market and dominate the global supply chain.

READ MORE

A new kind of mining

Written by Jake Stump, WVU Magazine on . Posted in Media, News

Print Friendly, PDF & Email

A team at West Virginia University, led by Paul Ziemkiewicz, director of the West Virginia Water Research Institute, is studying the occurrence of rare earth elements at 120 acid mine drainage treatment sites throughout West Virginia, Pennsylvania and Ohio.

These rare earth metals consist of the 17 chemically similar elements at the bottom of the periodic table, such as cerium and scandium. Despite their name, they’re not “rare” because they’re often found in other minerals, within the earth’s crust or, in this case, in coal and coal byproducts.

Yet the U.S. imports nearly all of its rare earth elements. China produces about 83 percent of the world’s rare earth elements used in modern technologies such as phones, batteries, TVs and medical and defense applications.

READ MORE